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Abstract. In order to clarify the physics of the crossover from a Peierls band insulator to a correlated
Mott-Hubbard insulator, we analyze ground-state and spectral properties of the one-dimensional half-
filled Holstein-Hubbard model using quasi-exact numerical techniques. In the adiabatic limit the transition
is connected to the band to Mott insulator transition of the ionic Hubbard model. Depending on the
strengths of the electron-phonon coupling and the Hubbard interaction the transition is either first order
or evolves continuously across a narrow intermediate phase with finite spin, charge, and optical excitation
gaps.

PACS. 71.10.Hf Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model
systems – 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.45.Lr Charge-density-wave systems
– 71.30.+h Metal-insulator transitions and other electronic transitions

1 Introduction

In quasi-one-dimensional materials like halogen-bridged
transition metal chain complexes, conjugated polymers,
organic charge transfer salts, or inorganic blue bronzes
the itinerancy of the electrons strongly competes with
electron-electron and electron-phonon interactions, which
tend to localize the charge carriers by establishing com-
mensurate spin- (SDW) or charge-density-wave (CDW)
ground states (GSs). At half-filling, Peierls (PI) or Mott
(MI) insulating phases are favored over the metallic state.
Quantum phase transitions between the insulating phases
are possible and the character of the electronic excitation
spectra reflects the properties of the different insulating
GSs. A controversial issue is the nature of the PI-MI tran-
sition and whether or not only one quantum critical point
separates the PI and MI phases in purely electronic model
Hamiltonians [1–5]. Phonon dynamical effects, which are
known to be particularly important in low-dimensional
materials [6,7] may further modify the transition.

In this paper we study the PI-MI quantum phase tran-
sition in the Holstein-Hubbard model (HHM) at half-
filling. Exact numerical methods [8] are used to diagonal-
ize the HHM on finite chains, preserving the full dynamics
of the phonons, and the density matrix renormalization
group (DMRG) technique [9] is applied to the adiabatic
HHM and the ionic Hubbard model. On finite periodic
chains we identify one critical PI-MI transition point in
the HHM where the site-parity of the GS changes and
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the excitation gap in the optical conductivity closes. In
the adiabatic limit two scenarios emerge with a discon-
tinuous transition at strong coupling and two subsequent
continuous transitions in the weak coupling regime with
the possibility for an intermediate insulating phase with
finite spin, charge, and optical excitation gaps.

2 Theoretical models

The paradigm for correlated electron-phonon systems has
usually been the one-dimensional HHM defined by

H = Ht−U − gω0

∑
i,σ

(
b†i + bi

)
niσ + ω0

∑
i

b†ibi, (1)

Ht−U = −t
∑
i,σ

(
c†iσci+1σ + h.c.

)
+ U

∑
i

ni↑ni↓. (2)

Ht−U constitutes the conventional Hubbard Hamiltonian
with hopping amplitude t and on-site Coulomb repul-
sion strength U ; c†iσ creates a spin-σ electron at Wan-
nier site i and niσ = c†iσciσ. In (1), the second term cou-
ples the electrons locally to a phonon created by b†i . Here
g =

√
εp/ω0 is a dimensionless electron-phonon coupling

constant, where εp and ω0 denote the polaron binding en-
ergy and the frequency of the optical phonon mode, re-
spectively.

The GS of the Holstein model for U = 0 is a Peierls dis-
torted state with staggered charge order in the adiabatic
limit ω0 → 0 for any finite εp. As in the Holstein model
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of spinless fermions [10,11], quantum phonon fluctuations
destroy the Peierls state for small electron-phonon inter-
action strength [6] – an issue which has remained unre-
solved in early studies of the Holstein model using Monte
Carlo techniques [12]. Above a critical threshold gc(ω0),
the Holstein model describes a PI with equal spin and
charge excitation gaps – the characteristic feature of a
band insulator (BI).

The adiabatic limit of the HHM takes the form

H = Ht−U −
∑
i,σ

∆iniσ +
K

2

∑
i

∆2
i (3)

(termed AHHM); it includes the elastic energy of a har-
monic lattice with a “stiffness constant” K. In this frozen
phonon approach, ∆i = (−1)i∆ is a measure of the static,
staggered density modulations of the PI phase. Equa-
tion (3) with K = 0 and fixed ∆ is known as the ionic
Hubbard model (IHM) for which an insulator-insulator
transition was already established before, although with
controversial results regarding the possibility of an addi-
tional intervening phase [1–3]. Interestingly, the IHM was
motivated originally in quite different contexts, i.e. for
the description of the neutral to ionic transition in charge
transfer salts [13] and ferro-electricity in transition metal
oxides [14,15].

3 Numerical results

3.1 Charge- and spin-structure factors

In order to establish the GS properties of the above models
and the existence of the PI-MI transition we start with
the evaluation of the staggered charge- and spin-structure
factors Sc(π) and Ss(π), respectively,

Sc(π) =
1
N

∑
j,σσ′

(−1)j

〈(
niσ − 1

2

) (
ni+j,σ′ − 1

2

)〉
,

Ss(π) =
1
N

∑
j

(−1)j〈Sz
i S

z
i+j〉 , Sz

i =
1
2
(ni↑ − ni↓) .

Results for the U -dependences of Sc(π) and Ss(π) on an
8-site HHM ring are shown in Figure 1 for two different
phonon frequencies, corresponding to adiabatic and non-
adiabatic regimes. The PI regime is characterized by a
large (small) charge- (spin-) structure factor. Also shown
in Figure 1 are results for the AHHM [N = 8 (Lanczos),
N = 64 (DMRG)] which will be discussed in Section 3.3
Increasing U at fixed εp and ω0, Peierls CDW order is sup-
pressed as becomes manifest from the rapid drop of Sc(π)
which decreases nearly linearly in the adiabatic regime,
but its initial decrease is significantly weaker for higher
phonon frequencies. The disappearance of the charge or-
dering signal is accompanied by a steep rise in Ss(π) indi-
cating enhanced antiferromagnetic correlations in the MI
phase. The data for Sc(π) provide evidence for a criti-
cal point Uc at which the CDW order disappears: rather
abruptly for adiabatic and smoothly for non-adiabatic
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Fig. 1. Staggered charge- (upper) and spin-structure factors
(middle panel) vs. the rescaled Hubbard interaction U/2εp.
The lowest panel displays the U -dependence of the kinetic en-
ergy Ekin. Lanczos results for the HHM on an 8-site ring are
given in the adiabatic (triangles) and non-adiabatic (squares)
regimes. Lanczos (N = 8 ring, down-triangle) and DMRG
(open 64-site chain, stars) results are shown for the AHHM
with K = 0.74. Open (closed) symbols belong to GSs with
site-parity P = −1 (+1).

phonon frequencies. Above Uc the low-energy physics of
the system is qualitatively similar to the pure Hubbard
chain; it is governed by gapless spin and massive charge
excitations. As compared to the PI phase, the local mag-
netic moment Li(U/t, εp/t, ω0/t) ∝ 〈(Sz

i )2〉 is strongly en-
hanced (e.g. Li(8, 2, 1)/Li(0, 2, 1) � 16.4).

We emphasize the weak finite-size dependence of the
exact diagonalization data for Sc(π) in both the strong-
CDW Peierls and MI phases (see the upper panel of
Fig. 2). The variation of Ss(π) with the system size N
points to a vanishing spin-structure factor in the CDW
state, i.e. for U < Uc but, of course, it is beyond our
current numerical capabilities to perform a real finite-size
analysis for the HHM with dynamical phonons. In the adi-
abatic limit, we expect a finite Ss(π) in the MI phase as
for the corresponding SDW state of the so-called extended
Hubbard model with U > 2V [16,17].

To discuss the lattice dynamical effects in some more
detail we show in Figure 3 the weights of m-phonon states
in the GS of the HHM at different interaction strengths.
First of all Figure 3 demonstrates that our phonon Hilbert
space truncation procedure is well-controlled in the sense
that states with larger numbers of phonons, as accounted
for in the calculations, have negligible spectral weight. Of
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Fig. 2. Finite-size scaling of charge- (upper panel) and spin-
(lower panel) structure factors in the HHM.

course, the number of phonons which have to be taken
into account strongly depends on the physical situation.
Whereas the GS of the MI is almost a zero-phonon state,
multi-phonon states become increasingly important if U
is reduced (εp is enhanced) in the PI regime.

For small U and low phonon frequencies the PI phase
appears for g > gc(ω0), even if the ratio λ = εp/2t is small.
In the GS of such a conventional BI phonons populate pre-
dominantly the q = 0 and π modes, but the total number
of phonons involved in the creation of the Peierls-distorted
CDW is rather small. On the contrary, for large phonon
frequencies, g > gc(ω0) implies λ � 1 and we observe a
multi-phonon GS (cf. Fig. 3). As a consequence the elec-
trons are heavily dressed by phonons, forming bipolarons
in real space, which lower their energy by ordering in a
staggered CDW. Therefore, in the non-adiabatic strong
electron-phonon coupling regime, the system is classified
rather as a charge-ordered bipolaronic insulator than as
a BI. The kinetic energy is much more suppressed for the
bipolaronic than for the band PI (cf. lower panel of Fig. 1).
Since SDW correlations reduce Ekin as well, the kinetic
energy reaches a maximum when the system crosses from
the PI to the MI regime.

3.2 Optical response

Valuable insight into the nature of the PI-MI transition is
obtained from symmetry considerations [2,5]. The BI-MI
transition of the IHM on finite lattices was shown to be
connected to a GS level crossing with a site-parity change,
where the site inversion symmetry operator P is defined
by Pc†iσP

† = c†N−iσ with N = 4n for i = 0, ..., N − 1.
This feature will become evident in the regular part of
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Fig. 3. Phonon distribution in the GS of the HHM for various
model parameters. In the MI state (open symbols) the weight
of the zero-phonon state is almost one, |cm|2 � 1.

the optical conductivity at T = 0,

σreg(ω)=
π

N

∑
m �=0

|〈ψ0|ĵ|ψm〉|2
Em − E0

δ(ω−Em+E0). (4)

Here, |ψ0〉 and |ψm〉 denote the GS and excited states, re-
spectively, and Em the corresponding eigenenergies. Im-
portantly, the current operator ĵ = −iet

∑
iσ(c†iσci+1 σ −

c†i+1 σciσ) has finite matrix elements between states of dif-
ferent site-parity only.

The evolution of the frequency dependence of σreg(ω)
from the PI to the MI phase with increasing U is illus-
trated in Figure 4. In the PI regime the electronic ex-
citations are gapped due to the pronounced CDW cor-
relations. The broad optical absorption band for U = 0
results from particle-hole excitations across the BI gap
which are accompanied by multi-phonon absorption and
emission processes. The shape of the absorption band re-
flects the phonon distribution function in the GS. Exci-
tonic gap states may occur in the process of structural
relaxation. At Uopt the optical gap ∆opt closes, and due
to the selection rules for optical transitions this necessarily
implies a GS level crossing with a site-parity change. We
have explicitly verified that the GS site parity in the PI
phase is P = +1 and P = −1 in the MI phase (see also
Fig. 1). For the HHM on finite rings Uopt is identical to
the critical point where Sc(π) sharply drops.

For the adiabatic phonon frequency used in Figure 4
the phonon absorption threshold is small and, because the
GS is a multi-phonon state, we find a gradual linear rise of
the integrated spectral weight Sreg(ω) =

∫ ω

0
σreg(ω′) dω′.

Sreg(ω)/Sreg(∞) is a natural measure for the relative
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Fig. 4. Optical conductivity in the 8-site HHM for ω0 =0.1t
and g2 =7. Top panel: PI phase for U = 0; middle panel: near
criticality U ∼ Uopt; lower panel: MI phase for U = 3t. Dashed
lines give the normalized integrated spectral weights Sreg(ω).
The lower two panels include σreg for g = 0 (dotted lines), i.e.
for the pure Hubbard chain.

weight of the different optical absorption processes. In
contrast, in the non-adiabatic regime (ω0 ≥ t), the lowest
optical excitations have mainly pure electronic character
in the vicinity of Uopt. As a result the gap is closed by a
state having large electronic spectral weight.

In the MI phase the optical gap is by its nature a corre-
lation gap. The lower panel in Figure 4 shows clearly that
σ(ω) of the HHM in the MI phase is dominated by excita-
tions which can be related to those of the pure Hubbard
model. In addition, phononic sidebands with low spectral
weight and phonon-induced gap states appear.

3.3 Phase diagram in the adiabatic limit

The above results for the HHM establish the PI-MI phase
transition scenario on small rings and trace it to the level
crossing of the two site-parity sectors. In order to draw
conclusions about the phase diagram in the adiabatic
regime we exploit the connection to the AHHM.

The magnitude of Sc(π) in the HHM for U = 0 and
ω0 = 0.1t allows a straightforward way to fix the stiff-
ness constant K in equation (3). Using the result of the
AHHM for Sc(π) at U = K = 0 we determine first
the ionic potential strength ∆0 by the requirement that
SIHM

c (π,∆0) = SHHM
c (π) for the same chain length and

periodic boundary conditions. In a second step, the GS
energy of the AHHM, E0(K,∆,U = 0), determines K
by the criterion that E0 is minimized for ∆ = ∆0. We
thereby obtain K = 0.74, which is henceforth kept fixed
when the interaction U is turned on. For each value of U ,
the ionic potential strength of the AHHM is then obtained
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Fig. 5. Level crossing line ∆cr(U) of the IHM for an 8-site ring
(diamonds) and from extrapolating Lanczos data for N ≤ 14
to a 64-site chain (circles). In addition: ionic potential strength
∆(U,K) of the AHHM for an 8-site ring (triangles) and on an
open 64-site chain (stars, DMRG results) for K = 0.74.

by minimizing E0(K,∆,U) with respect to ∆, yielding
∆ = ∆(U,K) as shown in Figure 5 (triangles). The re-
sulting structure factors for the AHHM are plotted in
Figure 1, too, and agree very accurately with the 8-site
HHM ring data for ω0/t = 0.1. This agreement reconfirms
numerically that the AHHM is indeed the appropriate ef-
fective model to describe the CDW phase of the HHM in
the adiabatic limit. The drop in Sc(π) at the transition
point results from a discontinuous vanishing of ∆(U,K)
(see Fig. 5). The large charge structure factor Sc(π) be-
low Uc and the enhancement of the spin structure factor
Ss(π) above Uc as well as the sharp changes at the transi-
tion point find a natural explanation with the results for
∆(U,K) in Figure 5. Below the transition ∆ is finite im-
plying long range CDW order in the GS. At the transition
point ∆ vanishes discontinuously and thereby the AHHM
reduces to the pure Hubbard model (∆ = 0).

Given the value for the stiffness constant K we also
plot in Figure 5 ∆(U,K) obtained from DMRG on an
open chain of length N = 64. For comparison, the corre-
sponding results for Sc(π) and Ss(π) in the AHHM are
shown in Figure 1, too (stars). Sc(π) decreases smoothly
and almost linearly; although unresolved on the vertical
scale in Figure 1 the transition remains discontinuous as
a consequence of the results for ∆(U,K) in Figure 5. In
contrast to the behavior of the 8-site chain, ∆(U,K) here
decreases more smoothly with increasing U and vanishes
discontinuously near U/2εp ≈ 0.75. The small discontin-
uous increase in Ss(π) at the transition is also hardly re-
solved for the 64-site chain in contrast to the 8-site chain
data. The discontinuous nature of the PI-MI transition in
the AHHM for ∆i = (−1)i∆ is obvious in the atomic limit
t = 0 where ∆ = 1/K for U < Uc = 1/K and ∆ = 0 for
U > Uc. As verified above, the first order nature persists
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Fig. 6. Insets (1) – (5): Evolution of the ground-state energy
vs. ∆ in the AHHM in different regions of the (K−1, U) pa-
rameter plane. From the variations in E(∆) a crossover from
a discontinuous PI (with ∆ > 0) to MI (∆ = 0) transition
to a second order transition is deduced. Main figure: Phase
diagram of the AHHM; the solid line represents a discontinu-
ous, first order and the dashed line a continuous second order
transition. These results summarize Lanczos data for a 14-site
AHHM chain with periodic or open boundary conditions. De-
tailed runs where performed for U = 0.3t and U = 5t. A possi-
ble additional continuous transition (dotted line) between two
insulating phases with finite ∆ is indicated as well.

for finite small t, i.e. in the strong coupling regime U ,
K−1 � t.

Also shown in Figure 5 is the level crossing line ∆cr(U)
of the IHM for N = 8 (diamonds) and N = 64 (circles)
chain. ∆cr(U) for N = 64 was obtained from extrapolat-
ing Lanczos results for rings of up to 14 sites to a 64-site
chain [18]. Importantly, ∆(U,K) and ∆cr(U) do not inter-
cept because ∆(U,K) jumps to zero before reaching the
level crossing point of the IHM.

The DMRG results presented in Figure 5 for N = 64
raise the question whether the discontinuous transition
in the AHHM can turn into a continuous transition on
approaching the weak coupling regime by increasing the
stiffness constant K. Indeed, as we have explicitely veri-
fied by exact diagonalization of a periodic (and open too)
AHHM ring of length N = 14, the transition is second
order in the regime U , K−1 
 t. The corresponding Lanc-
zos results for the variation of the GS energy vs. ∆ in the
(K,U)-parameter plane are summarized in Figure 6. De-
tailed K-scans were performed for weak (U = 0.3t) and
strong (U = 5t) Hubbard interaction. The evolution of
E(∆) in the AHHM in fact reveals that the transition from
the PI to the MI phase (sequence (2) − (3) − (4)) occurs
discontinuously at strong coupling K−1, U � t, while the
transition follows a Ginzburg-Landau-type behavior for a
second order phase transition at weak coupling (sequence
(1) − (5) in Fig. 6).

Due to the continuous decrease of ∆(U,K) at weak
coupling ∆(U,K) necessarily intercepts the ∆cr(U) line of
the IHM [18]. This intercept marks the point Uopt when
the site-parity sectors become degenerate and the optical
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Fig. 7. Qualitative behavior of the excitation gaps versus U
in the weak coupling regime of the AHHM U, K−1 � t. Solid
line: optical excitation gap ∆opt, dotted line: charge gap ∆c,
dashed line: spin gap ∆s. PI phase: ∆c = ∆s and site parity
P = +1; MI phase: ∆opt = ∆c and P = −1. Note that the
region in between Uopt and Us is extremely enlarged.

absorption gap ∆opt disappears. This situation therefore
implies the existence of an intermediate region Uopt <
U < Us with finite ∆, where Us marks the point where ∆
continuously vanishes. Since ∆ = 0 for U > Us, i.e. when
the AHHM reduces to the Hubbard model, the spin gap
vanishes at Us. The intermediate insulating phase thus has
finite spin, charge, and optical excitation gaps. For weak
coupling the PI-MI transition therefore evolves across two
critical points Uopt and Us. The U vs. K−1 phase diagram
contains a multicritical point at which a first order line
splits into two continuous transition lines. The additional
transition line is also indicated in Figure 6 (dotted line).
For weak U at fixed K the transition at Uopt is expected
to be of Kosterlitz-Thouless type since it corresponds to
the merging of the energies of the two site-parity sectors;
the CDW vanishes in a second order type transition at
U = Us. The E(∆) behavior, however, can only detect
the boundary to the MI phase of the AHHM where the
GS energy is minimized for vanishing ∆.

We summarize these findings in the diagram for the
excitation gaps shown in Figure 7,

∆c = E0(N/2 + 1, N/2) + E0(N/2 − 1, N/2)

−2E0(N/2, N/2) , (5)

∆s = E0(N/2 + 1, N/2 − 1) − E0(N/2, N/2), (6)

where E0(N↑, N↓) is the GS energy of the system with
N↑ spin-up and N↓ spin-down electrons. In the Peierls
BI phase for U < Uopt the spin and charge gaps, are
equal and finite and remarkably ∆opt �= ∆c (for a sim-
ilar conclusion in the IHM see [20]). At U = Uopt the
site-parity sectors become degenerate, ∆opt = 0 but re-
markably ∆c = ∆s > 0. For U ≥ Us the usual MI phase
of the half-filled Hubbard chain with ∆opt = ∆c > ∆s = 0
is realized. For strong coupling, when the PI to MI transi-
tion is first order, Uopt = Us, the spin gap discontinuously
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disappears at the transition and the optical gap jumps
from zero to the finite charge gap value of the Hubbard
chain. In weak coupling there exists an intermediate region
Uopt < U < Us in which all excitation gaps are finite. The
CDW persists for all U < Us. The site-parity eigenvalue
is P = +1 in the PI and P = −1 in the MI phase.

The insulating, intermediate phase at weak coupling
as identified above remains yet to be characterized. For
the insulator-insulator phase transition(s) in the IHM
Fabrizio et al. proposed the existence of an intermediate
phase with a long range bond order wave (BOW) based
on a bosonization analysis [1]. BOW order is character-
ized by a finite expectation value of the staggered bond
charge B = 1

N

∑
iσ(−1)i〈c†iσci+1 σ + h.c.〉. Some positive

numerical evidence has indeed been reported for enhanced
BOW correlations above the level crossing transition in
the IHM [3–5,21]. Yet, these results have remained am-
biguous so far and no consensus has been reached about
the existence of long range BOW order in the IHM. In
the attempt to search for BOW order the DMRG calcula-
tions, which for numerical accuracy reasons are predom-
inantly performed on open chains, suffer from the fact
that Friedel-like bond charge density oscillations are in-
duced by the chain ends already for the pure Hubbard
chain [5]. The identification of BOW order in the IHM
or AHHM by DMRG on open chains therefore requires a
delicate subtraction procedure to discriminate a BOW sig-
nal from the edge induced bond charge oscillations of the
Hubbard chain. We have nevertheless attempted to search
for BOW correlations in the weak coupling regime of the
AHHM, where the continuous nature of the transition into
the MI phase was established by the Lanczos results on
the periodic or open 14-sites chain, i.e. these calculations
naturally focused on the weak-U regime (U < t). This
weak coupling regime is notoriously hard for numerical
evaluations; unfortunately the numerical accuracy needed
to allow a firm conclusion about the presence or absence
of a BOW signal could not be achieved within our DMRG
runs.

While a confirmation is thus still lacking BOW or-
der remains a vivid candidate order in coexistence with
a CDW to characterize the intermediate phase in the
AHHM at weak coupling. We furthermore note that if the
existence of a BOW is verified in the AHHM, its phase di-
agram would be remarkably similar to the extended Hub-
bard model with nearest neighbor Coulomb repulsion with
an intervening BOW phase in the crossover between the
CDW and MI phases at weak coupling ([22,23], but see
also [24]).

4 Conclusions

In summary, we have found a PI-MI transition in the HHM
above a threshold electron-phonon coupling. The transi-
tion results from a GS level crossing with a change in the
GS site-parity eigenvalue. In the adiabatic limit two sce-
narios emerge with a discontinuous PI-MI transition for
U,K−1 � t, and two continuous transitions for weak cou-
pling U,K−1 
 t with an extremely narrow intermediate

phase where CDW order persists. In the non-adiabatic
regime our structure factor data indicate that the PI-MI
transition proceeds continuously.
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